Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future … – Nature.com

Posted: July 2, 2024 at 2:37 am

Cao, H., Duan, L., Zhang, Y., Cao, J. & Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Tar. 6, 426 (2021).

Article CAS Google Scholar

Zhang, Z. Z. et al. Improving the ability of CAR-T cells to hit solid tumors: challenges and strategies. Pharm. Res. 175, 106036 (2022).

Article CAS Google Scholar

Yan, Z. et al. Characteristics and risk factors of cytokine release syndrome in chimeric antigen receptor T cell treatment. Front. Immunol. 12, 611366 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zhang, Y. et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat. Commun. 13, 4553 (2022).

Article CAS PubMed PubMed Central Google Scholar

DuVall, G. A., Tarabar, D., Seidel, R. H., Elstad, N. L. & Fowers, K. D. Phase 2: a dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anti-Cancer Drugs 20, 8995 (2009).

Article CAS PubMed Google Scholar

Nuhn, L. et al. Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery. ACS Nano 6, 21982214 (2012).

Article CAS PubMed Google Scholar

Liu, Y. et al. Enhancing stem cell therapy for cartilage repair in osteoarthritis-a hydrogel focused approach. Gels 7, 263 (2021).

Article PubMed PubMed Central Google Scholar

Norouzi, M., Nazari, B. & Miller, D. W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today 21, 18351849 (2016).

Article CAS PubMed Google Scholar

Liu, G., Zhou, Y., Zhang, X. & Guo, S. Advances in hydrogels for stem cell therapy: regulation mechanisms and tissue engineering applications. J. Mater. Chem. B 10, 55205536 (2022).

Article CAS PubMed Google Scholar

Oura, K., Morishita, A., Tani, J. & Masaki, T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int. J. Mol. Sci. 22, 5801 (2021).

Article CAS PubMed PubMed Central Google Scholar

Ran, G. H. et al. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct. Tar. 7, 205 (2022).

Article CAS Google Scholar

Gao, W., Zhang, Y., Zhang, Q. & Zhang, L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Annu. Biomed. Eng. 44, 20492061 (2016).

Article Google Scholar

Ledford, B., Barron, C., Van Dyke, M. & He, J. Q. Keratose hydrogel for tissue regeneration and drug delivery. Semin. Cell Dev. Biol. 128, 145153 (2022).

Article CAS PubMed Google Scholar

Mo, F. et al. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev. 168, 7998 (2021).

Article CAS PubMed Google Scholar

Wang, Y., Malcolm, D. W. & Benoit, D. S. W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 139, 127138 (2017).

Article CAS PubMed PubMed Central Google Scholar

Zhang, R. et al. Polyvinyl alcohol/gelatin hydrogels regulate cell adhesion and chromatin accessibility. Int. J. Biol. Macromol. 219, 672684 (2022).

Article CAS PubMed Google Scholar

Zhou, J., Du, X. & Xu, B. Regulating the rate of molecular self-assembly for targeting cancer cells. Angew. Chem. Int. Ed. Engl. 55, 57705775 (2016).

Article CAS PubMed PubMed Central Google Scholar

Shi, W., Ji, Y., Zhang, X., Shu, S. & Wu, Z. Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery. J. Pharm. Sci.- 100, 886895 (2011).

Article CAS PubMed Google Scholar

Dhawan, S., Kapil, R. & Kapoor, D. N. Development and evaluation of in situ gel-forming system for sustained delivery of insulin. J. Biomater. Appl. 25, 699720 (2011).

Article CAS PubMed Google Scholar

Fennell, E. & Huyghe, J. M. Chemically responsive hydrogel deformation mechanics: a review. Molecules 24, 3521 (2019).

Article CAS PubMed PubMed Central Google Scholar

Zhang, D. et al. From design to applications of stimuli-responsive hydrogel strain sensors. J. Mater. Chem. B 8, 31713191 (2020).

Article CAS PubMed Google Scholar

Zhou, J. et al. pH-responsive nanocomposite hydrogel for simultaneous prevention of postoperative adhesion and tumor recurrence. Acta Biomater. 158, 228238 (2023).

Article CAS PubMed Google Scholar

Zhang, J. T., Huang, S. W. & Zhuo, R. X. Temperature-sensitive polyamidoamine dendrimer/poly(N-isopropylacrylamide) hydrogels with improved responsive properties. Macromol. Biosci. 4, 575578 (2004).

Article CAS PubMed Google Scholar

Chen, S. X. et al. In situ forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis. Bioact. Mater. 21, 8696 (2023).

CAS PubMed Google Scholar

Rajesh Krishnan, G., Cheah, C. & Sarkar, D. Hybrid cross-linking characteristics of hydrogel control stem cell fate. Macromol. Biosci. 15, 747755 (2015).

Article CAS PubMed Google Scholar

Stanzione, A. et al. Thermosensitive chitosan-based hydrogels supporting motor neuron-like NSC-34 cell differentiation. Biomater. Sci. 9, 74927503 (2021).

Article CAS PubMed Google Scholar

Tsao, C. T. et al. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules 15, 26562662 (2014).

Article CAS PubMed PubMed Central Google Scholar

Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 10381047 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zheng, Y. et al. Neuro-regenerative imidazole-functionalized GelMA hydrogel loaded with hAMSC and SDF-1 promote stem cell differentiation and repair focal brain injury. Bioact. Mater. 6, 627637 (2021).

CAS PubMed Google Scholar

Xu, T. et al. Composite hemostat spray seals post-surgical blood burst and ameliorates bacteria-arised inflammation for expediting wound healing. ACS Mater. Lett. 5, 18921901 (2023).

Article CAS Google Scholar

Ning, S. et al. Injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for ROS burst in TME and effective tumor treatment. Front. Bioeng. Biotech. 11, 1191014 (2023).

Article Google Scholar

Zeng, W. et al. An injectable hydrogel for enhanced FeGA-based chemodynamic therapy by increasing intracellular acidity. Front. Oncol. 11, 750855 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zimmermann, U. et al. Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 29, 564572 (2000). 574, 576 passim.

Article CAS PubMed Google Scholar

Li, Q. et al. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration. Artif. Cells Nanomed. B 49, 345353 (2021).

Article Google Scholar

Gholamali, I. & Yadollahi, M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int. J. Biol. Macromol. 160, 724735 (2020).

Article CAS PubMed Google Scholar

Snigdha, K., Singh, B. K., Mehta, A. S., Tewari, R. P. & Dutta, P. K. Self-assembling N-(9-fluorenylmethoxycarbonyl)-l-phenylalanine hydrogel as novel drug carrier. Int. J. Biol. Macromol. 93, 16391646 (2016).

Article CAS PubMed Google Scholar

Jin, H. et al. Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 12, 32953310 (2018).

Article CAS PubMed Google Scholar

Seo, H. W. et al. Injectable intratumoral hydrogel as 5-fluorouracil drug depot. Biomaterials 34, 27482757 (2013).

Article CAS PubMed Google Scholar

Wang, D. et al. Extracellular matrix viscosity reprogramming by in situ Au bioreactor-boosted microwavegenetics disables tumor escape in CAR-T immunotherapy. ACS Nano 17, 55035516 (2023).

Article CAS PubMed Google Scholar

Song, W. et al. Recent studies on hydrogels based on H(2)O(2)-responsive moieties: mechanism, preparation and application. Gels 8, 361 (2022).

Article CAS PubMed PubMed Central Google Scholar

Lu, L. et al. Oncolytic impediment/promotion balance disruption by sonosensitizer-free nanoplatforms unfreezes autophagy-induced resistance to sonocatalytic therapy. ACS Appl. Mater. Int. 14, 3646236472 (2022).

Article CAS Google Scholar

Rapp, T. L. & DeForest, C. A. Visible light-responsive dynamic biomaterials: going deeper and triggering more. Adv. Health. Mater. 9, e1901553 (2020).

Article Google Scholar

Murdan, S. Electro-responsive drug delivery from hydrogels. J. Control Release 92, 117 (2003).

Article CAS PubMed Google Scholar

Arajo-Custdio, S. et al. Injectable and magnetic responsive hydrogels with bioinspired ordered structures. ACS Biomater. Sci. Eng. 5, 13921404 (2019).

Article PubMed Google Scholar

Janga, K. Y. et al. Ion-sensitive in situ hydrogels of natamycin bilosomes for enhanced and prolonged ocular pharmacotherapy: in vitro permeability, cytotoxicity and in vivo evaluation. Artif. Cells Nanomed. B 46, 10391050 (2018).

Article CAS Google Scholar

Unger, K. & Coclite, A. M. Glucose-responsive boronic acid hydrogel thin films obtained via initiated chemical vapor deposition. Biomacromolecules 23, 42894295 (2022).

Article CAS PubMed PubMed Central Google Scholar

Field, R. D. et al. Ultrasound-responsive aqueous two-phase microcapsules for on-demand drug release. Angew. Chem. Int. Ed. Engl. 61, e202116515 (2022).

Article CAS PubMed Google Scholar

Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps7 (2013).

Article PubMed PubMed Central Google Scholar

Wang, L. L. et al. Cell therapies in the clinic. Bioeng. Transl. Med. 6, e10214 (2021).

Article PubMed PubMed Central Google Scholar

Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The future of engineered immune cell therapies. Science 378, 853858 (2022).

Article CAS PubMed PubMed Central Google Scholar

Here is the original post:
Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future ... - Nature.com

Related Posts