BRD9 regulates normal human hematopoietic stem cell function and lineage differentiation | Cell Death & Differentiation – Nature.com

Posted: June 4, 2024 at 2:48 am

Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:3571.

Article CAS PubMed Google Scholar

Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell. 2007;1:21829.

Article CAS PubMed Google Scholar

Majeti R, Park CY, Weissman IL. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell. 2007;1:63545.

Article CAS PubMed PubMed Central Google Scholar

Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10:12036.

Article CAS PubMed Google Scholar

Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351:aab2116.

Article PubMed Google Scholar

Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154:111226.

Article CAS PubMed Google Scholar

Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, et al. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells. Cell Rep. 2016;14:96677.

Article CAS PubMed PubMed Central Google Scholar

Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 2017;19:27181.

Article CAS PubMed PubMed Central Google Scholar

Karamitros D, Stoilova B, Aboukhalil Z, Hamey F, Reinisch A, Samitsch M, et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol. 2018;19:8597.

Article CAS PubMed Google Scholar

Huang P, Zhao Y, Zhong J, Zhang X, Liu Q, Qiu X, et al. Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells. Proc Natl Acad Sci USA. 2020;117:1286876.

Article CAS PubMed PubMed Central Google Scholar

Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395.

Article PubMed PubMed Central Google Scholar

Yu VWC, Yusuf RZ, Oki T, Wu J, Saez B, Wang X, et al. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells. Cell. 2016;167:131022.e17.

Article CAS PubMed Google Scholar

Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:40722.

Article CAS PubMed PubMed Central Google Scholar

Euskirchen G, Auerbach RK, Snyder M. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem. 2012;287:30897905.

Article CAS PubMed PubMed Central Google Scholar

Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic regulators as the gatekeepers of hematopoiesis. Trends Genet. 2021;37:12542.

Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447.

Article PubMed PubMed Central Google Scholar

Alpsoy A, Dykhuizen EC. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem. 2018;293:3892903.

Article CAS PubMed PubMed Central Google Scholar

Mittal P, Roberts CWM. The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020;17:43548.

Article CAS PubMed PubMed Central Google Scholar

Centore RC, Sandoval GJ, Soares LMM, Kadoch C, Chan HM. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 2020;36:93650.

Article CAS PubMed Google Scholar

Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert J-P, Barsyte-Lovejoy D, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:21431.

Article CAS PubMed PubMed Central Google Scholar

Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung C-W, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:111923.

Article CAS PubMed PubMed Central Google Scholar

Brand M, Measures AR, Wilson BG, Cortopassi WA, Alexander R, Hss M, et al. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol. 2015;10:2239.

Article CAS PubMed Google Scholar

Hohmann AF, Martin LJ, Minder JL, Roe J-S, Shi J, Steurer S, et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol. 2016;12:6729.

Article CAS PubMed PubMed Central Google Scholar

Michel BC, DAvino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20:141020.

Article CAS PubMed PubMed Central Google Scholar

Innis SM, Cabot B. GBAF, a small BAF sub-complex with big implications: a systematic review. Epigenetics Chromatin. 2020;13:48.

Article CAS PubMed PubMed Central Google Scholar

Weisberg E, Chowdhury B, Meng C, Case AE, Ni W, Garg S, et al. BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer J. 2022;12:110.

Article PubMed PubMed Central Google Scholar

Brien GL, Remillard D, Shi J, Hemming ML, Chabon J, Wynne K, et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife. 2018;7:e41305.

Article PubMed PubMed Central Google Scholar

Zhu X, Liao Y, Tang L. Targeting BRD9 for cancer treatment: A new strategy. Onco Targets Ther. 2020;13:13191200.

Article CAS PubMed PubMed Central Google Scholar

Alpsoy A, Utturkar SM, Carter BC, Dhiman A, Torregrosa-Allen SE, Currie MP, et al. BRD9 is a critical regulator of androgen receptor signaling and prostate cancer progression. Cancer Res. 2021;81:82033.

Article CAS PubMed Google Scholar

Wang L, Oh TG, Magida J, Estepa G, Obayomi SMB, Chong L-W, et al. Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity. Proc Natl Acad Sci USA. 2021;118:e2109517118.

Article CAS PubMed PubMed Central Google Scholar

Brold J, Eletto D, Busnadiego I, Mair NK, Moritz E, Schiefer S, et al. Genome-Wide CRISPR Screening Identifies BRD9 as a Druggable Component of Interferon-Stimulated Gene Expression and Antiviral Activity. EMBO rep. 2021;22:e52823.

Loo C-S, Gatchalian J, Liang Y, Leblanc M, Xie M, Ho J, et al. A Genome-wide CRISPR Screen Reveals a Role for the Non-canonical Nucleosome-Remodeling BAF Complex in Foxp3 Expression and Regulatory T Cell Function. Immunity. 2020;53:143157.e8.

Article CAS PubMed PubMed Central Google Scholar

Inoue D, Chew G-L, Liu B, Michel BC, Pangallo J, DAvino AR, et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature. 2019;574:4326.

Article CAS PubMed PubMed Central Google Scholar

Helming KC, Wang X, Roberts CWM. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 2014;26:30917.

Article CAS PubMed PubMed Central Google Scholar

Zhou L, Yao Q, Li H, Chen J. Targeting BRD9 by I-BRD9 efficiently inhibits growth of acute myeloid leukemia cells. Transl Cancer Res. 2021;10:336472.

Article CAS PubMed PubMed Central Google Scholar

Xiao M, Kondo S, Nomura M, Kato S, Nishimura K, Zang W, et al. BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state. Nat Commun. 2023;14:8372.

Article CAS PubMed PubMed Central Google Scholar

Garg S, Reyes-Palomares A, He L, Bergeron A, Lavalle V-P, Lemieux S, et al. Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood. 2019;134:26376.

Article CAS PubMed Google Scholar

Massengill MT, Young BM, Lewin AS, Ildefonso CJ. Co-Delivery of a Short-Hairpin RNA and a shRNA-Resistant Replacement Gene with Adeno-Associated Virus: An Allele-Independent Strategy for Autosomal-Dominant Retinal Disorders. Methods Mol Biol. 2019;1937:23558.

Article CAS PubMed Google Scholar

Uchida N, Nassehi T, Drysdale CM, Gamer J, Yapundich M, Demirci S, et al. High-Efficiency Lentiviral Transduction of Human CD34+ Cells in High-Density Culture with Poloxamer and Prostaglandin E2. Mol Ther Methods Clin Dev. 2019;13:18796.

Article CAS PubMed PubMed Central Google Scholar

Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinforma. 2018;19:534.

Article CAS Google Scholar

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:26289.

Article CAS PubMed Google Scholar

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:1554550.

Article CAS PubMed PubMed Central Google Scholar

Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:26773.

Article CAS PubMed Google Scholar

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

Article PubMed PubMed Central Google Scholar

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:65065.

Article CAS PubMed Google Scholar

Schmeier S, Alam T, Essack M, Bajic VB. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions. Nucleic Acids Res. 2017;45:D14550.

Article CAS PubMed Google Scholar

Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 2012;481:38993.

Article CAS PubMed PubMed Central Google Scholar

Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 2018;19:e46255.

Article PubMed PubMed Central Google Scholar

Zou Z, Ohta T, Miura F, Oki S. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res. 2022;50:W17582.

Article CAS PubMed PubMed Central Google Scholar

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:20710.

Article CAS PubMed PubMed Central Google Scholar

Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 2020;48:D8829.

Article CAS PubMed Google Scholar

Here is the original post:
BRD9 regulates normal human hematopoietic stem cell function and lineage differentiation | Cell Death & Differentiation - Nature.com

Related Posts