Understanding the brain requires an in-depth knowledge of its components. Advanced single-cell sequencing technologies are enabling researchers to explore the secrets of this complex and mysterious organ in unprecedented detail.
The human brain and spinal cord contain billions of different cells and connections that form intricate neural networks. Studying the brains building blocks is a fundamental step toward understanding how it functions and what can go wrong to cause disease.
The brain is very complex and we have to start at the molecular level to understand how it works, says Jiaqian Wu, associate professor at UTHealth Houston, McGovern Medical School, Texas.
By measuring multiple molecular signatures in thousands to millions of individual cells, single-cell sequencing can comprehensively characterize the diversity of brain cell types and provide insight into relationships between different cell populations. Single-cell transcriptomics enables the analysis of the abundance and sequences of RNA molecules, while epigenomics is the genome-wide mapping of DNA methylation, histone protein modification, chromatin accessibility and chromosome conformation.
We can barcode individual brain cells and examine things like gene expression or epigenetic changes to understand how each cell is regulated and how they respond to external stimuli, says Sarah Marzi, Edmond and Lily Safra research fellow at the UK DRI at Imperial College London.
Rapid developments in the experimental and computational methods of single-cell technologies are providing novel insights into differences among and within the cells that make up the brain revealing cell diversity, identifying rare subpopulations of interest and discovering unique characteristics of individual cells. Acting as a bridge between neuroscience, computational biology and systems biology, these sophisticated new tools hold the key to probing the brains inner circuitry in health and disease.
The two most common cell types in the central nervous system are neurons, which send and receive electrical and chemical signals, and glial cells, which are necessary for the healthy function of neurons. These different cell types are then further divided into additional subclasses. But despite recent progress, there is still a lack of a complete consensus or taxonomy of brain cell types.
The brain is made up of many different cell types that fill vastly different functions, says Marzi. Understanding the identity of cells requires molecular profiling to reveal tiny distinctions between cells.
In the past, people were limited to profiling whole tissue samples. While these bulk sequencing approaches can provide valuable information, they dont reveal the whole story.
Because there are so many different cell types, the molecular signals are averaged out across the population of cells, says Wu. Newer single-cell technologies are allowing a more fine-grained examination of whats going on at an individual cell level. We use computational methods to cluster cells into different cell subtypes based on their molecular signatures.
Single-cell sequencing technologies are providing researchers with powerful tools to extract genomic, transcriptomic or epigenomic information at an individual cell level. Over the past decade, technological advances have fueled exponential increases in the number of cells that can be studied, enabling the analysis of hundreds of thousands of cells in a single experiment. Many of these analyses are focused on examining gene activity within individual cells using RNA sequencing (RNA-seq) but there are still some disadvantages compared to bulk approaches.
Most single-cell technologies still have a lower sensitivity than bulk sequencing approaches, explains Wu. For example, Im interested in long non-coding RNAs, which are a very important type of regulatory RNA, but we may not capture as many of these kinds of molecules if theyre expressed at a low level.
The first and most important step in most single-cell sequencing experiments is the isolation of individual cells from a tissue sample. While such approaches can shed light on cellular relationships based on shared molecular characteristics, they dont provide any information about how cells are organized relative to each other in a tissue. But groundbreaking spatially resolved transcriptomic methods are set to revolutionize understanding of how cells are assembled in 3D within their microenvironment.
These new methods are incredibly exciting, but there is still some room for improvement, says Wu.
Even the most highly resolved methods can now achieve a resolution of perhaps around three to five cells within a tissue and so disentangling where those molecular signals are coming from at a single cell level is still challenging. Overcoming these remaining technological barriers will open a wealth of new opportunities for researchers to map gene expression in a spatial context in brain tissues as well as to take measurements of enzymatic processes and the interactions between cells, among genes, and between proteins.
Studying the blood-brain barrier is an important example, envisions Marzi. You need that spatial resolution of which cell layers onto which and whats happening in these cells as they react to pathological changes in the brain or as they develop pathology and the barrier becomes penetrable.
Researchers are using more holistic approaches to capture increasingly rich information from individual brain cells. Many of these combine RNA-seq with epigenetics methods such as assay for transposase-accessible chromatin by sequencing (ATAC-Seq), and chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) to simultaneously capture multiomics information about gene expression along with clues about how genes are regulated at a single-cell level. But while combining single-cell technologies provides unique opportunities for probing into the complexity of the brain, it creates computational challenges around integrating and interpreting the enormous multiple datasets generated.
Wus laboratory combines neuroscience, stem cell biology and systems biology involving genomics, bioinformatics and functional assays to unravel gene transcription and regulatory mechanisms in the brain and spinal cord.
Were studying gene expression and regulation using single-cell sequencing methods and integrating different datasets to gain a more comprehensive understanding, explains Wu. My laboratory is self-sufficient were split into two halves; one half is wet lab and the other is dry lab. Weve set up our own bioinformatics pipeline to analyze the different types of data and make sense of it.
Marzis lab uses a combination of wet and computational genomics approaches to understand the regulatory consequences of environmental and genetic risk factors for Alzheimers and Parkinsons disease, both neurodegenerative disorders.
This is a field where you need to use a lot of data science and quantitative approaches to learn new things because the datasets were creating are so large and complicated that you need to apply solid statistical methods to analyze it, she explains.
Given the remarkable progress in machine learning technology, such techniques are also currently being introduced for single-cell analysis to overcome challenges and make more effective use of its results with encouraging results so far.
Since the first single-cell RNA-seq study was published in 2009, there has been an explosion in conducting such studies across biomedical research and the field of neuroscience is no exception. Novel single-cell sequencing technologies are beginning to uncover the comprehensive landscape of brain cell type diversity and are predicted to drive huge progress in understanding this complex organ in coming years.
Scientists are applying these methods to create detailed atlases of every cell type in the brain across time from development to adulthood. For example, one recent study performed RNA-seq across regions of the developing human brain to provide a comprehensive molecular and spatial analysis of the early stages of brain and cortical development. Another applied whole-brain spatial transcriptomics to deduce a molecular atlas of the adult mouse brain. Such resources will be hugely valuable for researchers studying normal brain development and disease pathology.
Single-cell approaches are really powerful, says Marzi. Theyre providing us with the tools to identify the key players behind unhealthy cell responses, and finding ways to change them.
See original here:
Dissecting the Complexity of the Brain at a Single Cell Level - Technology Networks
- International Stem Cell Corporation Provides Strategic Update on its Skin Care Program [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- International Stem Cell Corporation Provides Strategic Update on its Skin Care Program [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- CSC news roundup 2010-04-11 [Last Updated On: April 12th, 2010] [Originally Added On: April 12th, 2010]
- CSC news roundup 2010-04-11 [Last Updated On: April 12th, 2010] [Originally Added On: April 12th, 2010]
- International Stem Cell Corporation Engages Leading Immunogeneticists to Advance its Industry-first, Immune-matched Stem Cells [Last Updated On: April 14th, 2010] [Originally Added On: April 14th, 2010]
- International Stem Cell Corporation Engages Leading Immunogeneticists to Advance its Industry-first, Immune-matched Stem Cells [Last Updated On: April 14th, 2010] [Originally Added On: April 14th, 2010]
- MicroRNA therapy could be a powerful tool to correct the CSC dysregulation? [Last Updated On: April 17th, 2010] [Originally Added On: April 17th, 2010]
- MicroRNA therapy could be a powerful tool to correct the CSC dysregulation? [Last Updated On: April 17th, 2010] [Originally Added On: April 17th, 2010]
- CSC news links 2010-04-18 [Last Updated On: April 19th, 2010] [Originally Added On: April 19th, 2010]
- CSC news links 2010-04-18 [Last Updated On: April 19th, 2010] [Originally Added On: April 19th, 2010]
- Sessions on CSC Therapeutics at AACR10 [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Sessions on CSC Therapeutics at AACR10 [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- CSC news links 2010-05-01 [Last Updated On: May 2nd, 2010] [Originally Added On: May 2nd, 2010]
- More about presentations at AACR10 [Last Updated On: May 2nd, 2010] [Originally Added On: May 2nd, 2010]
- More about presentations at AACR10 [Last Updated On: May 2nd, 2010] [Originally Added On: May 2nd, 2010]
- CSC news links 2010-05-01 [Last Updated On: May 2nd, 2010] [Originally Added On: May 2nd, 2010]
- International Stem Cell Corporation Signs Financing Agreement [Last Updated On: May 6th, 2010] [Originally Added On: May 6th, 2010]
- International Stem Cell Corporation Signs Financing Agreement [Last Updated On: May 6th, 2010] [Originally Added On: May 6th, 2010]
- CSC news links 2010-05-08 [Last Updated On: May 9th, 2010] [Originally Added On: May 9th, 2010]
- CSC news links 2010-05-08 [Last Updated On: May 9th, 2010] [Originally Added On: May 9th, 2010]
- International Stem Cell and Absorption Systems Confirm Results Showing Stem Cell Derived Corneal Tissue as an Alternative to Animals for Drug Testing [Last Updated On: May 12th, 2010] [Originally Added On: May 12th, 2010]
- International Stem Cell and Absorption Systems Confirm Results Showing Stem Cell Derived Corneal Tissue as an Alternative to Animals for Drug Testing [Last Updated On: May 12th, 2010] [Originally Added On: May 12th, 2010]
- Generic drug a potential treatment for glioblastoma? [Last Updated On: May 14th, 2010] [Originally Added On: May 14th, 2010]
- Generic drug a potential treatment for glioblastoma? [Last Updated On: May 14th, 2010] [Originally Added On: May 14th, 2010]
- US Patent: Isolation and use of solid tumor stem cells [Last Updated On: May 18th, 2010] [Originally Added On: May 18th, 2010]
- US Patent: Isolation and use of solid tumor stem cells [Last Updated On: May 18th, 2010] [Originally Added On: May 18th, 2010]
- International Stem Cell Corporation and The Automation Partnership Enter into Strategic Alliance to Automate Cornea Tissue Production [Last Updated On: May 19th, 2010] [Originally Added On: May 19th, 2010]
- International Stem Cell Corporation and The Automation Partnership Enter into Strategic Alliance to Automate Cornea Tissue Production [Last Updated On: May 19th, 2010] [Originally Added On: May 19th, 2010]
- An evolving concept of CSC in tumor biology [Last Updated On: May 21st, 2010] [Originally Added On: May 21st, 2010]
- An evolving concept of CSC in tumor biology [Last Updated On: May 21st, 2010] [Originally Added On: May 21st, 2010]
- International Stem Cell Corporation Moves International Cornea Development Program Forward [Last Updated On: May 26th, 2010] [Originally Added On: May 26th, 2010]
- International Stem Cell Corporation Moves International Cornea Development Program Forward [Last Updated On: May 26th, 2010] [Originally Added On: May 26th, 2010]
- Phase I clinical trial of ICT-107 [Last Updated On: June 3rd, 2010] [Originally Added On: June 3rd, 2010]
- Phase I clinical trial of ICT-107 [Last Updated On: June 3rd, 2010] [Originally Added On: June 3rd, 2010]
- CSCs responsible for metastasis identified [Last Updated On: June 6th, 2010] [Originally Added On: June 6th, 2010]
- CSCs responsible for metastasis identified [Last Updated On: June 6th, 2010] [Originally Added On: June 6th, 2010]
- International Stem Cell Corporation's Parthenogenetic Stem Cell Patent is Approved by the United States Patent and Trademark Office [Last Updated On: June 9th, 2010] [Originally Added On: June 9th, 2010]
- International Stem Cell Corporation's Parthenogenetic Stem Cell Patent is Approved by the United States Patent and Trademark Office [Last Updated On: June 9th, 2010] [Originally Added On: June 9th, 2010]
- International Stem Cell Corporation Announces Company Update Conference Call. ISCO Chairman Kenneth Aldrich to Discuss 'Status of the Company' [Last Updated On: June 10th, 2010] [Originally Added On: June 10th, 2010]
- International Stem Cell Corporation Announces Company Update Conference Call. ISCO Chairman Kenneth Aldrich to Discuss 'Status of the Company' [Last Updated On: June 10th, 2010] [Originally Added On: June 10th, 2010]
- Decitabine may target ovarian CSCs? [Last Updated On: June 14th, 2010] [Originally Added On: June 14th, 2010]
- Decitabine may target ovarian CSCs? [Last Updated On: June 14th, 2010] [Originally Added On: June 14th, 2010]
- New Article from North County Times - BIOTECH: International Stem Cell Clears Debt, Gets Patent [Last Updated On: June 17th, 2010] [Originally Added On: June 17th, 2010]
- New Article from North County Times - BIOTECH: International Stem Cell Clears Debt, Gets Patent [Last Updated On: June 17th, 2010] [Originally Added On: June 17th, 2010]
- Patent application: Levels of Oct1 as a method of identifying CSCs [Last Updated On: June 18th, 2010] [Originally Added On: June 18th, 2010]
- Patent application: Levels of Oct1 as a method of identifying CSCs [Last Updated On: June 18th, 2010] [Originally Added On: June 18th, 2010]
- OncoMed Has 'Wnt' in its Sails [Last Updated On: June 21st, 2010] [Originally Added On: June 21st, 2010]
- OncoMed Has 'Wnt' in its Sails [Last Updated On: June 21st, 2010] [Originally Added On: June 21st, 2010]
- International Stem Cell Corporation Names Charles J. Casamento to Board of Directors [Last Updated On: June 23rd, 2010] [Originally Added On: June 23rd, 2010]
- International Stem Cell Corporation Names Charles J. Casamento to Board of Directors [Last Updated On: June 23rd, 2010] [Originally Added On: June 23rd, 2010]
- International Stem Cell Corporation (ISCO.OB) Announces New Patent Issuance Under License Agreement [Last Updated On: June 25th, 2010] [Originally Added On: June 25th, 2010]
- International Stem Cell Corporation (ISCO.OB) Announces New Patent Issuance Under License Agreement [Last Updated On: June 25th, 2010] [Originally Added On: June 25th, 2010]
- California Health Institute Interviews Jeffrey Janus - CEO of Lifeline Cell Technology [Last Updated On: June 29th, 2010] [Originally Added On: June 29th, 2010]
- California Health Institute Interviews Jeffrey Janus - CEO of Lifeline Cell Technology [Last Updated On: June 29th, 2010] [Originally Added On: June 29th, 2010]
- International Stem Cell Corporation - Excerpt from Agora Financial's Breakthrough Technology Alert by Patrick Cox [Last Updated On: July 1st, 2010] [Originally Added On: July 1st, 2010]
- International Stem Cell Corporation - Excerpt from Agora Financial's Breakthrough Technology Alert by Patrick Cox [Last Updated On: July 1st, 2010] [Originally Added On: July 1st, 2010]
- Melanoma-initiating cells identified [Last Updated On: July 2nd, 2010] [Originally Added On: July 2nd, 2010]
- Melanoma-initiating cells identified [Last Updated On: July 2nd, 2010] [Originally Added On: July 2nd, 2010]
- International Stem Cell Corporation and Sankara Nethralaya Launch Collaboration to Develop Stem Cell-Based Treatment for Corneal Vision Impairment [Last Updated On: July 8th, 2010] [Originally Added On: July 8th, 2010]
- International Stem Cell Corporation and Sankara Nethralaya Launch Collaboration to Develop Stem Cell-Based Treatment for Corneal Vision Impairment [Last Updated On: July 8th, 2010] [Originally Added On: July 8th, 2010]
- Two recent OA articles [Last Updated On: July 12th, 2010] [Originally Added On: July 12th, 2010]
- Two recent OA articles [Last Updated On: July 12th, 2010] [Originally Added On: July 12th, 2010]
- Innovative Researcher Vlog [Last Updated On: July 16th, 2010] [Originally Added On: July 16th, 2010]
- Innovative Researcher Vlog [Last Updated On: July 16th, 2010] [Originally Added On: July 16th, 2010]
- More about salinomycin [Last Updated On: July 19th, 2010] [Originally Added On: July 19th, 2010]
- More about salinomycin [Last Updated On: July 19th, 2010] [Originally Added On: July 19th, 2010]
- International Stem Cell Corporation Plans $10 Million Financing Through European Subsidiary [Last Updated On: July 23rd, 2010] [Originally Added On: July 23rd, 2010]
- International Stem Cell Corporation Plans $10 Million Financing Through European Subsidiary [Last Updated On: July 23rd, 2010] [Originally Added On: July 23rd, 2010]
- Irradiating brain's stem cell niche [Last Updated On: July 26th, 2010] [Originally Added On: July 26th, 2010]
- Irradiating brain's stem cell niche [Last Updated On: July 26th, 2010] [Originally Added On: July 26th, 2010]
- Prostate CSCs sensitive to gamma-tocotrienol? [Last Updated On: July 27th, 2010] [Originally Added On: July 27th, 2010]
- Prostate CSCs sensitive to gamma-tocotrienol? [Last Updated On: July 27th, 2010] [Originally Added On: July 27th, 2010]
- Researchers Study CSCs as Therapeutic Targets for Mesothelioma [Last Updated On: July 28th, 2010] [Originally Added On: July 28th, 2010]
- Researchers Study CSCs as Therapeutic Targets for Mesothelioma [Last Updated On: July 28th, 2010] [Originally Added On: July 28th, 2010]
- International Stem Cell Corporation and Sristi Biosciences Enter Distribution Agreement for Lifeline Cell Technology's Brand of Human Cell Culture... [Last Updated On: July 29th, 2010] [Originally Added On: July 29th, 2010]
- Disagreement about melanoma CSCs [Last Updated On: July 29th, 2010] [Originally Added On: July 29th, 2010]
- International Stem Cell Corporation and Sristi Biosciences Enter Distribution Agreement for Lifeline Cell Technology's Brand of Human Cell Culture... [Last Updated On: July 29th, 2010] [Originally Added On: July 29th, 2010]
- Disagreement about melanoma CSCs [Last Updated On: July 29th, 2010] [Originally Added On: July 29th, 2010]
- Cell of origin for human prostate cancer [Last Updated On: August 1st, 2010] [Originally Added On: August 1st, 2010]
- Cell of origin for human prostate cancer [Last Updated On: August 1st, 2010] [Originally Added On: August 1st, 2010]