Enhancing prime editing in hematopoietic stem and progenitor cells by modulating nucleotide metabolism – Nature.com

Posted: June 4, 2024 at 2:48 am

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149157 (2019).

Article CAS PubMed PubMed Central Google Scholar

Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 56355652 (2021).

Article CAS PubMed PubMed Central Google Scholar

Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731740 (2022).

Article CAS PubMed Google Scholar

Ayinde, D., Casartelli, N. & Schwartz, O. Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat. Rev. Microbiol. 10, 675680 (2012).

Article CAS PubMed Google Scholar

Ballana, E. & Est, J. A. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol. 23, 680692 (2015).

Article CAS PubMed Google Scholar

Mauney, C. H. & Hollis, T. SAMHD1: recurring roles in cell cycle, viral restriction, cancer, and innate immunity. Autoimmunity 51, 96110 (2018).

Article CAS PubMed PubMed Central Google Scholar

Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654657 (2011).

Article CAS PubMed PubMed Central Google Scholar

Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658661 (2011).

Article CAS PubMed PubMed Central Google Scholar

Baldauf, H. M. et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat. Med. 18, 16821687 (2012).

Article CAS PubMed Google Scholar

Li, D. et al. Vpx mediated degradation of SAMHD1 has only a very limited effect on lentiviral transduction rate in ex vivo cultured HSPCs. Stem Cell Res. 15, 271280 (2015).

Article CAS PubMed PubMed Central Google Scholar

Levesque, S. et al. Marker-free co-selection for successive rounds of prime editing in human cells. Nat. Commun. 13, 5909 (2022).

Article CAS PubMed PubMed Central Google Scholar

Mikdar, M. et al. The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis. Blood 137, 35483562 (2021).

Article CAS PubMed PubMed Central Google Scholar

Everette, K. A. et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat. Biomed. Eng. 7, 616628 (2023).

Article CAS PubMed PubMed Central Google Scholar

Zeng, J. et al. Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells. Preprint at bioRxiv https://doi.org/10.1101/2023.05.27.542323 (2023).

Fiumara, M. et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01915-4 (2023).

Article PubMed Google Scholar

Ferreira da Silva, J. et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat. Commun. 13, 760 (2022).

Article CAS PubMed PubMed Central Google Scholar

Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161177 (2022).

Article CAS PubMed PubMed Central Google Scholar

Nambiar, T. S., Baudrier, L., Billon, P. & Ciccia, A. CRISPR-based genome editing through the lens of DNA repair. Mol. Cell 82, 348388 (2022).

Article CAS PubMed PubMed Central Google Scholar

Skasko, M. et al. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J. Biol. Chem. 280, 1219012200 (2005).

Article CAS PubMed Google Scholar

Sharma, P. L., Nurpeisov, V. & Schinazi, R. F. Retrovirus reverse transcriptases containing a modified YXDD motif. Antivir. Chem. Chemother. 16, 169182 (2005).

Article CAS PubMed Google Scholar

Palika, S., Alzbutas, G. & Skirgaila, R. Decreased Km to dNTPs is an essential M-MuLV reverse transcriptase adoption required to perform efficient cDNA synthesis in one-step RT-PCR assay. Protein Eng. Des. Sel. 31, 7989 (2018).

Article PubMed Google Scholar

Ponnienselvan, K. et al. Addressing the dNTP bottleneck restricting prime editing activity. Preprint at bioRxiv https://doi.org/10.1101/2023.10.21.563443 (2023).

Li, X. et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 13, 1669 (2022).

Article CAS PubMed PubMed Central Google Scholar

Su, S. S., Lahue, R. S., Au, K. G. & Modrich, P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263, 68296835 (1988).

Article CAS PubMed Google Scholar

Thomas, D. C., Roberts, J. D. & Kunkel, T. A. Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266, 37443751 (1991).

Article CAS PubMed Google Scholar

Lahue, R., Au, K. & Modrich, P. DNA mismatch correction in a defined system. Science 245, 160164 (1998).

Article Google Scholar

Mathews, C. K. Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat. Rev. Cancer 15, 528539 (2015).

Article CAS PubMed Google Scholar

Traut, T. W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 122 (1994).

Article CAS PubMed Google Scholar

Mjelle, R. et al. Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair. 30, 5367 (2015).

Article CAS PubMed Google Scholar

Longley, M. J., Pierce, A. J. & Modrich, P. D. N. A polymerase is required for human mismatch repair in vitro. J. Biol. Chem. 272, 1091710921 (1997).

Article CAS PubMed Google Scholar

Domnguez-Gonzlez, C. et al. Deoxynucleoside therapy for thymidine kinase 2deficient myopathy. Ann. Neurol. 86, 293303 (2019).

Article PubMed PubMed Central Google Scholar

Amtmann, D., Gammaitoni, A. R., Galer, B. S., Salem, R. & Jensen, M. P. The impact of TK2 deficiency syndrome and its treatment by nucleoside therapy on quality of life. Mitochondrion 68, 19 (2023).

Article CAS PubMed Google Scholar

Li, C. et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 141, 20852099 (2023).

CAS PubMed PubMed Central Google Scholar

Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436443 (2023).

Article CAS PubMed Google Scholar

An, M. et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02078-y (2024).

Article PubMed Google Scholar

Liu, B. et al. An efficient lentiviral CRISPRi approach to silence genes in primary human monocytes. Preprint at bioRxiv https://doi.org/10.1101/2020.12.23.424242 (2020).

Casirati, G. et al. Epitope editing enables targeted immunotherapies for acute myeloid leukemia. Nature 621, 404414 (2023).

Article CAS PubMed PubMed Central Google Scholar

Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

Article PubMed PubMed Central Google Scholar

Brinkman, E. K. et al. Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res. 46, e58 (2018).

Article PubMed PubMed Central Google Scholar

Xu, L., Liu, Y. & Han, R. BEAT: a Python program to quantify base editing from Sanger sequencing. Cris. J. 2, 223229 (2019).

Article CAS Google Scholar

Wu, Y. et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776783 (2019).

Article CAS PubMed PubMed Central Google Scholar

Bloh, K. et al. Deconvolution of complex DNA repair (DECODR): establishing a novel deconvolution algorithm for comprehensive analysis of CRISPR-edited Sanger sequencing data. Cris. J. 4, 120131 (2021).

Article CAS Google Scholar

Conant, D. et al. Inference of CRISPR edits from Sanger trace data. Cris. J. 5, 123130 (2022).

Article CAS Google Scholar

Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 215226 (2019).

Article Google Scholar

More:
Enhancing prime editing in hematopoietic stem and progenitor cells by modulating nucleotide metabolism - Nature.com

Related Posts