Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells – Nature.com

Posted: July 11, 2024 at 2:42 am

Kolios, G. & Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration. 85(1), 310 (2013).

Article PubMed Google Scholar

Wisniewski, D., Affer, M., Willshire, J. & Clarkson, B. Further phenotypic characterization of the primitive lineage- CD34+CD38-CD90+CD45RA- hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia. Blood Cancer J. 1(9), e36 (2011).

Article CAS PubMed PubMed Central Google Scholar

Cheng, H., Zheng, Z. & Cheng, T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 11(1), 3444 (2020).

Article PubMed Google Scholar

Walasek, M. A., van Os, R. & de Haan, G. Hematopoietic stem cell expansion: Challenges and opportunities. Ann. N. Y. Acad. Sci. 1266, 138150 (2012).

Article ADS CAS PubMed Google Scholar

Yu, B. et al. Co-expression of Runx1, Hoxa9, Hlf, and Hoxa7 confers multi-lineage potential on hematopoietic progenitors derived from pluripotent stem cells. Front Cell Dev. Biol. 10, 859769 (2022).

Article PubMed PubMed Central Google Scholar

Lee, Y. et al. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling. Nat. Commun. 5, 5583 (2014).

Article ADS CAS PubMed Google Scholar

Hofmeister, C. C., Zhang, J., Knight, K. L., Le, P. & Stiff, P. J. Ex vivo expansion of umbilical cord blood stem cells for transplantation: Growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 39(1), 1123 (2007).

Article CAS PubMed Google Scholar

Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 423(6938), 409414 (2003).

Article ADS CAS PubMed Google Scholar

Muzzey, D., Evans, E. A. & Lieber, C. Understanding the basics of NGS: From mechanism to variant calling. Curr. Genet. Med. Rep. 3(4), 158165 (2015).

Article PubMed PubMed Central Google Scholar

Wang, Y. & Blelloch, R. Cell cycle regulation by microRNAs in stem cells. Results Probl. Cell Differ. 53, 459472 (2011).

Article CAS PubMed Google Scholar

Lima, J. F., Cerqueira, L., Figueiredo, C., Oliveira, C. & Azevedo, N. F. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol. 15(3), 338352 (2018).

Article PubMed PubMed Central Google Scholar

Ajami, M., Soleimani, M., Abroun, S. & Atashi, A. Comparison of cord blood CD34 + stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble /membrane isoforms of SCF. J Cell Biochem. 120(9), 1529715309 (2019).

Article CAS PubMed Google Scholar

Albayrak, E. & Kocaba, F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. Adv. Protein Chem. Struct. Biol. 135, 425496 (2023).

Article PubMed Google Scholar

Nakamura-Ishizu, A. Thrombopoietin regulates mitochondria homeostasis for hematopoietic stem cell maintenance. Rinsho Ketsueki. 62(5), 521527. https://doi.org/10.11406/rinketsu.62.521 (2021) (Japanese).

Article PubMed Google Scholar

Gao, P. et al. Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells. Genes Dev. 34(1314), 950964 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kimura, T. & Yamazaki, S. Development of low-cost ex vivo hematopoietic stem cell expansion. Rinsho Ketsueki. 63(10), 14221429 (2022).

PubMed Google Scholar

Gao, L., Decker, M., Chen, H. & Ding, L. Thrombopoietin from hepatocytes promotes hematopoietic stem cell regeneration after myeloablation. Elife. 31(10), e69894. https://doi.org/10.7554/eLife.69894.PMID:34463253;PMCID:PMC8457823 (2021).

Article Google Scholar

Li, J. et al. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm Sin B. 12(6), 28082831 (2022).

Article CAS PubMed Google Scholar

Nakamura-Ishizu, A. & Suda, T. Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation. Ann. N. Y. Acad. Sci. 1466(1), 5158. https://doi.org/10.1111/nyas.14169 (2020).

Article ADS PubMed Google Scholar

Nakamura-Ishizu, A. et al. Prolonged maintenance of hematopoietic stem cells that escape from thrombopoietin deprivation. Blood. 137(19), 26092620 (2021).

Article CAS PubMed PubMed Central Google Scholar

Papa, L., Djedaini, M. & Hoffman, R. Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Ann. N. Y. Acad. Sci. 1466(1), 3950 (2020).

Article ADS PubMed Google Scholar

Lynch, J. et al. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient -catenin/Hoxa9/Prmt1 axis. Blood. 143(16), 15861598. https://doi.org/10.1182/blood.2023022082.PMID:38211335;PMCID:PMC11103100 (2024).

Article CAS PubMed PubMed Central Google Scholar

Sakamaki, T. et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem. Biophys. Res. Commun. 539, 3441 (2021).

Article CAS PubMed Google Scholar

Schirripa, A., Sexl, V. & Kollmann, K. Cyclin-dependent kinase inhibitors in malignant hematopoiesis. Front Oncol. 12, 916682 (2022).

Article CAS PubMed PubMed Central Google Scholar

Singh, A. K., Althoff, M. J. & Cancelas, J. A. Signaling pathways regulating hematopoietic stem cell and progenitor aging. Curr. Stem Cell Rep. 4(2), 166181 (2018).

Article CAS PubMed PubMed Central Google Scholar

Wang, Y. & Sugimura, R. Ex vivo expansion of hematopoietic stem cells. Exp. Cell Res. 427(1), 113599 (2023).

Article CAS PubMed Google Scholar

Chen, Z., Guo, Q., Song, G. & Hou, Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol. Life Sci. 79(4), 218. https://doi.org/10.1007/s00018-022-04200-w.PMID:35357574;PMCID:PMC11072845 (2022).

Article CAS PubMed PubMed Central Google Scholar

Zhang, L., Mack, R., Breslin, P. & Zhang, J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J. Hematol. Oncol. 13(1), 157 (2020).

Article PubMed PubMed Central Google Scholar

Pinto, J. P. et al. StemChecker: A web-based tool to discover and explore stemness signatures in gene sets. Nucleic Acids Res. 43(W1), W72W77 (2015).

Article CAS PubMed PubMed Central Google Scholar

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51(D1), D587D592 (2023).

Article CAS PubMed Google Scholar

Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 24982504 (2003).

Article CAS PubMed PubMed Central Google Scholar

Takagi, S. et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood J. Am. Soc. Hematol. 119(12), 27682777 (2012).

CAS Google Scholar

Sigurjonsson, O. E., Gudmundsson, K. O., Haraldsdttir, V., Rafnar, T. & Gudmundsson, S. Flt3/Flk-2-ligand in synergy with thrombopoietin delays megakaryocyte development and increases the numbers of megakaryocyte progenitor cells in serum-free cultures initiated with CD34+ cells. J. Hematotherapy Stem Cell Res. 11(2), 389400 (2002).

Article CAS Google Scholar

Aizenman, Y. & de Vellis, J. Brain neurons develop in a serum and glial free environment: Effects of transferrin, insulin-insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res. 406(12), 3242 (1987).

Article CAS PubMed Google Scholar

Yadav, P., Vats, R., Bano, A. & Bhardwaj, R. Hematopoietic stem cells culture, expansion and differentiation: an insight into variable and available media. Int. J. Stem Cells. 13(3), 326334 (2020).

Article PubMed PubMed Central Google Scholar

Tsiftsoglou, A. S. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): Implications in regenerative medicine. Cells. 10(8), 2140 (2021).

Article CAS PubMed PubMed Central Google Scholar

Nogueira-Pedro, A. et al. -Tocopherol induces hematopoietic stem/progenitor cell expansion and ERK1/2-mediated differentiation. J. Leukocyte Biol. 90(6), 11111117 (2011).

Article CAS PubMed Google Scholar

Hu, Q. et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 12(7), 706 (2021).

Article CAS PubMed PubMed Central Google Scholar

Ren, Y., Cui, Y. N. & Wang, H. W. Effects of different concentrations of nicotinamide on hematopoietic stem cells cultured in vitro. World J. Stem Cells. 16(2), 163175 (2024).

Article PubMed PubMed Central Google Scholar

Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35(5), 567576 (1993).

Article CAS PubMed Google Scholar

Phuc, P. V. et al. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank. 13(2), 341351 (2012).

Article CAS PubMed Google Scholar

Grassinger, J. et al. Differentiation of hematopoietic progenitor cells towards the myeloid and B-lymphoid lineage by hepatocyte growth factor (HGF) and thrombopoietin (TPO) together with early acting cytokines. Eur. J. Haematol. 77(2), 134144 (2006).

Article CAS PubMed Google Scholar

Rayner, K. J. & Moore, K. J. The plaque micro environment: microRNAs control the risk and the development of atherosclerosis. Curr. Atheroscler. Rep. 14(5), 413421 (2012).

Article CAS PubMed PubMed Central Google Scholar

Alexander, T., Greco, R. & Snowden, J. A. Hematopoietic stem cell transplantation for autoimmune disease. Annu. Rev. Med. 72, 215228 (2021).

Article CAS PubMed Google Scholar

Zhu, X., Tang, B. & Sun, Z. Umbilical cord blood transplantation: Still growing and improving. Stem Cells Transl. Med. 10(Suppl 2), S62-s74 (2021).

Article PubMed PubMed Central Google Scholar

Gudauskait, G., Kairien, I., Ivakien, T., Rascon, J. & Mobasheri, A. Therapeutic perspectives for the clinical application of umbilical cord hematopoietic and mesenchymal stem cells: Overcoming complications arising after allogeneic hematopoietic stem cell transplantation. Adv. Exp. Med. Biol. 1409, 111126 (2023).

Article PubMed Google Scholar

Wilkinson, A. C., Igarashi, K. J. & Nakauchi, H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 21(9), 541554 (2020).

Article CAS PubMed PubMed Central Google Scholar

Amiri, F., Kiani, A. A., Bahadori, M. & Roudkenar, M. H. Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: A cost-effective method to maintain self-renewal and homing marker expression. Mol. Biol. Rep. 49(2), 931941 (2022).

Article CAS PubMed Google Scholar

Shirdare, M., Amiri, F., Samiee, M. P. & Safari, A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol. Biol. Rep. 51(1), 189 (2024).

Article CAS PubMed Google Scholar

Elahimanesh, M., Shokri, N., Mohammadi, P., Parvaz, N. & Najafi, M. Step by step analysis on gene datasets of growth phases in hematopoietic stem cells. Biochem. Biophys. Rep. 1(39), 101737 (2024).

Google Scholar

Read the original:
Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells - Nature.com

Related Posts