Hereditary E200K mutation within the prion protein gene alters human iPSC derived cardiomyocyte function | Scientific Reports – Nature.com

Posted: September 25, 2022 at 2:14 am

Takada, L. T. et al. Genetic prion disease: Experience of a rapidly progressive dementia center in the United States and a review of the literature. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 174(1), 3669 (2017).

PubMed PubMed Central Article Google Scholar

Minikel, E. V. et al. Quantifying prion disease penetrance using large population control cohorts. Sci. Transl. Med. 8(322), 322329 (2016).

Google Scholar

Ashwath, M. L., Dearmond, S. J. & Culclasure, T. Prion-associated dilated cardiomyopathy. Arch. Internal Med. 165(3), 338340 (2005).

Article Google Scholar

Itzhaki-Ben-Zadok, O., Orvin, K., Inbar, E. & Rechavia, E. Cardiomyopathy associated with Ceutzfeld-Jakob disease: A diagnosis of exclusion: A case report. Eur. Heart J. Case Rep. 4(1), 15 (2020).

PubMed PubMed Central Article Google Scholar

Cortelli, P. et al. Cardiovascular dysautonomia in fatal familial insomnia. Clin. Auton. Res. 1(1), 1521 (1991).

ADS CAS PubMed Article Google Scholar

Palma, J. A. et al. Cardiac autonomic impairment during sleep as a marker of human prion diseases: A preliminary report. Clin. Neurophysiol. 125(1), 208210 (2014).

PubMed Article Google Scholar

Garza, M. C., Monzn, M., Marn, B., Badiola, J. J. & Monlen, E. Distribution of peripheral PrP(Sc) in sheep with naturally acquired scrapie. PLoS ONE 9(5), e97768 (2014).

ADS PubMed PubMed Central Article CAS Google Scholar

Jewell, J. E., Brown, J., Kreeger, T. & Williams, E. S. Prion protein in cardiac muscle of elk (Cervus elaphus nelsoni) and white-tailed deer (Odocoileus virginianus) infected with chronic wasting disease. J. Gener. Virol. 87(Pt 11), 34433450 (2006).

CAS Article Google Scholar

Balachandran, A. et al. Experimental oral transmission of chronic wasting disease to red deer (Cervus elaphus elaphus): Early detection and late stage distribution of protease-resistant prion protein. Can. Vet. J. 51(2), 169178 (2010).

CAS PubMed PubMed Central Google Scholar

Bessen, R. A. et al. Transmission of chronic wasting disease identifies a prion strain causing cachexia and heart infection in hamsters. PLoS ONE 6(12), e28026 (2011).

ADS CAS PubMed PubMed Central Article Google Scholar

Mitchell, G. B. et al. Experimental oral transmission of chronic wasting disease to reindeer (Rangifer tarandus tarandus). PLoS ONE 7(6), e39055 (2012).

ADS CAS PubMed PubMed Central Article Google Scholar

Krasemann, S. et al. BSE-associated prion-amyloid cardiomyopathy in primates. Emerg. Infect. Dis. 19(6), 985988 (2013).

CAS PubMed PubMed Central Article Google Scholar

Trifilo, M. J. et al. Prion-induced amyloid heart disease with high blood infectivity in transgenic mice. Science (N.Y.) 313(5783), 9497 (2006).

ADS CAS Article Google Scholar

Nico, P. B. et al. Altered behavioural response to acute stress in mice lacking cellular prion protein. Behav. Brain Res. 162(2), 173181 (2005).

CAS PubMed Article Google Scholar

Nico, P. B. et al. Impaired exercise capacity, but unaltered mitochondrial respiration in skeletal or cardiac muscle of mice lacking cellular prion protein. Neurosci. Lett. 388(1), 2126 (2005).

CAS PubMed Article Google Scholar

Klamt, F. et al. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radical Biol. Med. 30(10), 11371144 (2001).

CAS Article Google Scholar

Beraldo, F. H. et al. Mechanisms of neuroprotection against ischemic insult by stress-inducible phosphoprotein-1/prion protein complex. J. Neurochem. 145(1), 6879 (2018).

CAS PubMed PubMed Central Article Google Scholar

Rambold, A. S. et al. Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO J. 27(14), 19741984 (2008).

CAS PubMed PubMed Central Article Google Scholar

Dupiereux, I. et al. Protective effect of prion protein via the N-terminal region in mediating a protective effect on paraquat-induced oxidative injury in neuronal cells. J. Neurosci. Res. 86(3), 653659 (2008).

CAS PubMed Article Google Scholar

Haigh, C. L. Brown, DR: Prion protein reduces both oxidative and non-oxidative copper toxicity. J. Neurochem. 98(3), 677689 (2006).

CAS PubMed Article Google Scholar

Resenberger, U. K., Winklhofer, K. F. & Tatzelt, J. Neuroprotective and neurotoxic signaling by the prion protein. Top. Curr. Chem. 305, 101119 (2011).

CAS PubMed Article Google Scholar

Turnbaugh, J. A., Westergard, L., Unterberger, U., Biasini, E. & Harris, D. A. The N-terminal, polybasic region is critical for prion protein neuroprotective activity. PLoS ONE 6(9), e25675 (2011).

ADS CAS PubMed PubMed Central Article Google Scholar

Zhang, B. et al. Prion protein protects against renal ischemia/reperfusion injury. PLoS ONE 10(9), e0136923 (2015).

PubMed PubMed Central Article CAS Google Scholar

Zocche-Soprana, H., Canes-Souza, L., Debbas, V. & Martins Laurindo, F. R. Cellular prion protein (PrP(C)) and superoxide dismutase (SOD) in vascular cells under oxidative stress. Exp. Toxicol. Pathol. 63(3), 229236 (2011).

PubMed Article CAS Google Scholar

Zanetti, F. et al. The cellular prion protein counteracts cardiac oxidative stress. Cardiovasc. Res. 104(1), 93102 (2014).

CAS PubMed Article Google Scholar

Keller, G., Binyamin, O., Frid, K., Saada, A. & Gabizon, R. Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment?. Neurobiol. Dis. 124, 5766 (2019).

CAS PubMed Article Google Scholar

Casini, S., Verkerk, A. O. & Remme, C. A. Human iPSC-derived cardiomyocytes for investigation of disease mechanisms and therapeutic strategies in inherited arrhythmia syndromes: Strengths and limitations. Cardiovasc. Drugs Therapy 31(3), 325344 (2017).

Article Google Scholar

Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26(6), 862-879.e811 (2020).

CAS PubMed PubMed Central Article Google Scholar

Koivumki, J. T. et al. Structural immaturity of human iPSC-derived cardiomyocytes: In silico investigation of effects on function and disease modeling. Front. Physiol. 9, 80 (2018).

PubMed PubMed Central Article Google Scholar

Bellin, M. et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 32(24), 31613175 (2013).

CAS PubMed PubMed Central Article Google Scholar

Paci, M., Casini, S., Bellin, M., Hyttinen, J. & Severi, S. Large-scale simulation of the phenotypical variability induced by loss-of-function long QT mutations in human induced pluripotent stem cell cardiomyocytes. Int. J. Mol. Sci. 19, 11 (2018).

Article CAS Google Scholar

Rebs, S., Sedaghat-Hamedani, F., Kayvanpour, E., Meder, B. & Streckfuss-Bmeke, K. Generation of pluripotent stem cell lines and CRISPR/Cas9 modified isogenic controls from a patient with dilated cardiomyopathy harboring a RBM20 p.R634W mutation. Stem Cell Res. 47, 101901 (2020).

CAS PubMed Article Google Scholar

Bosman, A. et al. Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21. Stem Cells (Dayton, Ohio) 33(5), 14341446 (2015).

CAS Article Google Scholar

Foliaki, S. T. et al. Pathogenic prion protein isoforms are not present in cerebral organoids generated from asymptomatic donors carrying the E200K mutation associated with familial prion disease. Pathogens 9, 6 (2020).

Article Google Scholar

Baiardi, S. et al. Phenotypic diversity of genetic Creutzfeldt-Jakob disease: A histo-molecular-based classification. Acta Neuropathol. 2021, 5 (2021).

Google Scholar

Asante, E. A. et al. Absence of spontaneous disease and comparative prion susceptibility of transgenic mice expressing mutant human prion proteins. J. Gen. Virol. 90(Pt 3), 546558 (2009).

CAS PubMed PubMed Central Article Google Scholar

Foliaki, S. T. et al. Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Mol. Brain 14(1), 156 (2021).

CAS PubMed PubMed Central Article Google Scholar

Miele, G., Jeffrey, M., Turnbull, D., Manson, J. & Clinton, M. Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem. Biophys. Res. Commun. 291(2), 372377 (2002).

CAS PubMed Article Google Scholar

Faris, R. et al. Cellular prion protein is present in mitochondria of healthy mice. Sci. Rep. 7, 41556 (2017).

ADS CAS PubMed PubMed Central Article Google Scholar

Flnes, I. H. et al. Mitochondrial respiratory chain deficiency correlates with the severity of neuropathology in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol. Commun. 8(1), 50 (2020).

PubMed PubMed Central Article CAS Google Scholar

Paterson, A. W., Curtis, J. C. & Macleod, N. K. Complex I specific increase in superoxide formation and respiration rate by PrP-null mouse brain mitochondria. J. Neurochem. 105(1), 177191 (2008).

CAS PubMed Article Google Scholar

Forkink, M. et al. Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochem. Biophys. Acta. 1837(8), 12471256 (2014).

CAS PubMed Google Scholar

Li, N. et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278(10), 85168525 (2003).

CAS PubMed Article Google Scholar

Poleggi, A. et al. Age at onset of genetic (E200K) and sporadic Creutzfeldt-Jakob diseases is modulated by the CYP4X1 gene. J. Neurol. Neurosurg. Psychiatry 89(12), 12431249 (2018).

PubMed Article Google Scholar

Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8, 9 (2016).

Article CAS Google Scholar

Ilango, S., Paital, B., Jayachandran, P., Padma, P. R. & Nirmaladevi, R. Epigenetic alterations in cancer. Front. Biosci. (Landmark Ed.) 25, 10581109 (2020).

CAS Article Google Scholar

Mitrov, E. et al. Genetic Creutzfeldt-Jakob disease affected monozygotic twins: Analysis of survival time, age at death and possible exogenous risk factors. J. Clin. Neurosci. 66, 191195 (2019).

PubMed Article Google Scholar

Simon, E. S. et al. Creutzfeldt-Jakob disease profile in patients homozygous for the PRNP E200K mutation. Ann. Neurol. 47(2), 257260 (2000).

CAS PubMed Article Google Scholar

Groveman, B. R. et al. Sporadic creutzfeldt-jakob disease prion infection of human cerebral organoids. Acta Neuropathol. Commun. 7(1), 90 (2019).

PubMed Article Google Scholar

Henderson, D. M. et al. Rapid antemortem detection of CWD prions in deer saliva. PLoS ONE 8(9), e74377 (2013).

ADS CAS PubMed PubMed Central Article Google Scholar

See the original post here:
Hereditary E200K mutation within the prion protein gene alters human iPSC derived cardiomyocyte function | Scientific Reports - Nature.com

Related Posts