Human adipose-derived stem cells genetically programmed to induce necroptosis for cancer immunotherapy | Cancer … – Nature.com

Posted: June 14, 2024 at 2:42 am

Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev. 2015;82:111.

Article PubMed Google Scholar

Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:419.

Article CAS PubMed Google Scholar

Han J, Hwang HS, Na K. TRAIL-secreting human mesenchymal stem cells engineered by a non-viral vector and photochemical internalization for pancreatic cancer gene therapy. Biomaterials. 2018;182:25968.

Article CAS PubMed Google Scholar

Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: opportunities and challenges. Oncotarget. 2017;8:75756.

Article PubMed PubMed Central Google Scholar

Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:273949.

Article CAS PubMed Google Scholar

Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007;7:111.

Article Google Scholar

Alvites R, Branquinho M, Sousa AC, Lopes B, Sousa P, Maurcio AC. Mesenchymal stem/stromal cells and their paracrine activityimmunomodulation mechanisms and how to influence the therapeutic potential. Pharmaceutics. 2022;14:381.

Article CAS PubMed PubMed Central Google Scholar

Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharm Sci. 2020;41:65364.

Article CAS PubMed Google Scholar

Zhou Y, Yamamoto Y, Xiao Z, Ochiya T. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med. 2019;8:1025.

Article CAS PubMed PubMed Central Google Scholar

Park N, Kim KS, Na K. Stem cell-derived paracrine factors by modulated reactive oxygen species to enhance cancer immunotherapy. J Control Release. 2023;363:67081.

Article CAS PubMed Google Scholar

Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, et al. Emerging biomaterials for tumor immunotherapy. Biomater Res. 2023;27:47.

Article CAS PubMed PubMed Central Google Scholar

Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: from physiology to therapeutics. Stem Cells. 2020;38:124153.

Article PubMed Google Scholar

Karp JM, Teo GSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4:20616.

Article CAS PubMed Google Scholar

Quesenberry PJ, Becker PS. Stem cell homing: rolling, crawling, and nesting. Proc Natl Acad Sci USA 1998;95:151557.

Article CAS PubMed PubMed Central Google Scholar

Hocking AM. The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care. 2015;4:62330.

Article Google Scholar

Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrdder H, Jensen T, et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene. 2004;23:50958.

Article CAS PubMed Google Scholar

Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24:1095103.

Article PubMed Google Scholar

Tang C, Ang BT, Pervaiz S. Cancer stem cell: target for anticancer therapy. FASEB J. 2007;21:377785.

Article CAS PubMed Google Scholar

Finlan L, Hupp T. Epidermal stem cells and cancer stem cells: insights into cancer and potential therapeutic strategies. Eur J Cancer. 2006;42:128392.

Article CAS PubMed Google Scholar

Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14:437.

Article CAS PubMed Google Scholar

Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol/Hematol. 2004;51:128.

Article PubMed Google Scholar

de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. 2015;39:5662.

Article PubMed Google Scholar

Newton K, Manning G. Necroptosis and inflammation. Annu Rev Biochem. 2016;85:74363.

Article CAS PubMed Google Scholar

Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17:15164.

Article CAS PubMed PubMed Central Google Scholar

Ros U, Pea-Blanco A, Hnggi K, Kunzendorf U, Krautwald S, Wong WW-L, et al. Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Rep. 2017;19:17587.

Article CAS PubMed PubMed Central Google Scholar

Choi ME, Price DR, Ryter SW, Choi AM. Necroptosis: a crucial pathogenic mediator of human disease. JCI insight. 2019;4:15.

Article Google Scholar

Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:13547.

Article Google Scholar

Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, et al. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem. 2021;476:123343.

Article CAS PubMed Google Scholar

Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, et al. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy. Int J Mol Med. 2019;44:77186.

PubMed PubMed Central Google Scholar

Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer. 2019;18:117.

Article CAS Google Scholar

Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:21327.

Article CAS PubMed Google Scholar

Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA. 2012;109:53227.

Article CAS PubMed PubMed Central Google Scholar

Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang J-G, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:44353.

Article CAS PubMed Google Scholar

Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7:97181.

Article CAS PubMed Google Scholar

Rodriguez D, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon C, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23:7688.

Article CAS PubMed Google Scholar

Wang K-j WangK-y, Zhang H-z MengX-y, Chen J-f WangP, et al. Up-regulation of RIP3 alleviates prostate cancer progression by activation of RIP3/MLKL signaling pathway and induction of necroptosis. Front Oncol. 2020;10:1720.

Article PubMed PubMed Central Google Scholar

Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol. 2015;16:68997.

Article CAS PubMed Google Scholar

Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38:20923.

Article CAS PubMed Google Scholar

Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:15262.

Article CAS PubMed PubMed Central Google Scholar

Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal. 2010;3:re4re4.

Article PubMed Google Scholar

Schmidt SV, Seibert S, Walch-Rckheim B, Vicinus B, Kamionka E-M, Pahne-Zeppenfeld J, et al. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1 release, and efficient paracrine dendritic cell activation. Oncotarget. 2015;6:8635.

Article PubMed PubMed Central Google Scholar

Chen D, Yu J, Zhang L. Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta-Rev Cancer. 2016;1865:22836.

Article CAS Google Scholar

Wang R, Li H, Wu J, Cai Z-Y, Li B, Ni H, et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature. 2020;580:38690.

Article CAS PubMed Google Scholar

Hu X-M, Zhang Q, Zhou R-X, Wu Y-L, Li Z-X, Zhang D-Y, et al. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells. 2021;13:386.

Article PubMed PubMed Central Google Scholar

Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng. 2019;13:116.

Article Google Scholar

Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20:136679.

Article CAS PubMed PubMed Central Google Scholar

Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D. Immunotherapy in melanoma: recent advances and future directions. Eur J Surg Oncol. 2017;43:60411.

Article CAS PubMed Google Scholar

Tan AC, Ashley DM, Lpez GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA: Cancer J Clin. 2020;70:299312.

PubMed Google Scholar

Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharm Rev. 2018;70:41245.

Article CAS PubMed PubMed Central Google Scholar

Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.

Article CAS PubMed PubMed Central Google Scholar

See the article here:
Human adipose-derived stem cells genetically programmed to induce necroptosis for cancer immunotherapy | Cancer ... - Nature.com

Related Posts