Stem cells used to increase bone strength

Posted: February 19, 2012 at 9:20 am

A research team led by UC Davis Health System scientists has developed a novel technique to enhance bone growth by using a molecule which, when injected into the bloodstream, directs the body's stem cells to travel to the surface of bones.

Once these cells are guided to the bone surface by this molecule, the stem cells differentiate into bone-forming cells and synthesize proteins to enhance bone growth. The study, which was published online today in Nature Medicine, used a mouse model of osteoporosis to demonstrate a unique treatment approach that increases bone density and prevents bone loss associated with aging and estrogen deficiency.

"There are many stem cells, even in elderly people, but they do not readily migrate to bone," said Wei Yao, the principal investigator and lead author of the study. "Finding a molecule that attaches to stem cells and guides them to the targets we need is a real breakthrough."

Researchers are exploring stem cells as possible treatments for a wide variety of conditions and injuries, ranging from peripheral artery disease and macular degeneration to blood disorders, skin wounds and diseased organs. Directing stem cells to travel and adhere to the surface of bone for bone formation has been among the elusive goals in regenerative medicine.

The researchers made use of a unique hybrid molecule, LLP2A-alendronate, developed by a research team led by Kit Lam, professor and chair of the UC Davis Department of

Biochemistry and Molecular Medicine. The researchers' hybrid molecule consists of two parts: the LLP2A part that attaches to mesenchymal stem cells in the bone marrow, and a second part that consists of the bone-homing drug alendronate. After the hybrid molecule was injected into the bloodstream, it picked up mesenchymal stem cells in the bone marrow and directed those cells to the surfaces of bone, where the stem cells carried out their natural bone-formation and repair functions.

"Our study confirms that stem-cell-binding molecules can be exploited to direct stem cells to therapeutic sites inside an animal," said Lam, who also is an author of the article. "It represents a very important step in making this type of stem cell therapy a reality."

See the article here:
Stem cells used to increase bone strength

Related Posts