Stowers Researchers Reveal Molecular Competition Drives Adult Stem Cells to Specialize

Posted: August 7, 2014 at 8:51 am

Contact Information

Available for logged-in reporters only

Newswise KANSAS CITY, MO Adult organisms ranging from fruit flies to humans harbor adult stem cells, some of which renew themselves through cell division while others differentiate into the specialized cells needed to replace worn-out or damaged organs and tissues.

Understanding the molecular mechanisms that control the balance between self-renewal and differentiation in adult stem cells is an important foundation for developing therapies to regenerate diseased, injured or aged tissue.

In the current issue of the journal Nature, scientists at the Stowers Institute for Medical Research report that competition between two proteins, Bam and COP9, balances the self-renewal and differentiation functions of ovarian germline stem cells (GSCs) in fruit flies (Drosophila melanogaster).

Bam is the master differentiation factor in the Drosophila female GSC system, says Stowers Investigator Ting Xie, Ph.D., and senior author of the Nature paper. In order to carry out the switch from self-renewal to differentiation, Bam must inactivate the functions of self-renewing factors as well as activate the functions of differentiation factors.

Bam, which is encoded by the gene with the unusual name of bag-of-marbles, is expressed at high levels in differentiating cells and very low levels in GSCs of fruit flies.

Among the self-renewing factors targeted by Bam is the COP9 signalosome (CSN), an evolutionarily conserved, multi-functional complex that contains eight protein sub-units (CSN1 to CSN8). Xie and his collaborators discovered that Bam and the COP9 sub-unit known as CSN4 have opposite functions in regulating the fate of GSCs in female fruit flies.

Bam can switch COP9 function from self-renewal to differentiation by sequestering and antagonizing CSN4, Xie says. Bam directly binds to CSN4, preventing its association with the seven other COP9 components via protein competition, he adds. CSN4 is the only COP9 sub-unit that can interact with Bam.

This study has offered a novel way for Bam to carry out the switch from self-renewal to differentiation, says Xie, whose lab uses a combination of genetic, molecular, genomic and cell biological approaches to investigate GSCs as well as somatic stem cells of fruit flies.

Go here to see the original:
Stowers Researchers Reveal Molecular Competition Drives Adult Stem Cells to Specialize

Related Posts